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ABSTRACT

Thermal performance in oil-immersed power transformers is governed by the flow of oil, acting both as
an electrical insulator and a medium for the transfer of heat generated in the core and windings toward
the tank and the surrounding air. This paper presents the development of an advanced three-
dimensional (3D) finite element model for the coupled solution of heat transfer and fluid flow equa-
tions governing transformer thermal performance. The main advantages of the proposed method are: (i)
no need to predefine the convection coefficients at the interfaces between the active part/tank walls and
the circulating oil, (ii) detailed representation of specific transformer parts that play an important role in
the accurate representation of oil flow and heat dissipation (such as winding cooling ducts and corru-
gated tank panels) through an automated design process, enhancing the model accuracy with the least
possible computational effort and (iii) accurate definition of the transformer heat sources (core and
windings loss). The proposed methodology provides an integrated tool for thermal simulation, able to
predict detailed thermal distribution in a specific transformer, without requiring prior knowledge of

nodal temperature or temperature gradient values.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Finite element method (FEM), as well as other numerical
methods, has been extensively applied in thermal analysis of
electric machines and transformers, providing enhanced repre-
sentation of the geometrical configuration of the considered
devices, in an effort to replace semi-empirical methods involving
analytical formulas and constants deriving from experimental
results [1]. The finite difference method is proposed by Pierce [2]
for hottest-spot temperature prediction in dry-type transformers.
Two-dimensional (2D) FEM thermal calculation is proposed in Ref.
[3] for the calculation of core hottest-spot temperature in power
and distribution transformers. Moreover, it is employed to model
the effect of harmonic currents in the winding temperature [4] and
to perform heat transfer analysis and obtain the steady state and
the transient temperature distribution of SFg gas cooled-insulated
power transformers [5]. Most recent trends in thermal modeling
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employ coupled electromagnetic-thermal finite element models
[6,7]. In Ref. [8] a 3D FEM model using a magnetic scalar potential
formulation is combined with a mixed analytical and numerical
form of the electrical circuit equation to take into account the skin
and proximity effects in the windings, resulting to current densi-
ties that are used as inputs to FEM for the solution of steady state
thermal equations. In Ref. [9] a method that relies on the combi-
nation of analytical calculations, 2D FEM for the solution of
thermal equations and 3D FEM for the solution of electromagnetic
equations is presented for transformer thermal modeling. Rosas
et al. propose the finite volume method as a means of predicting
the improvement of the cooling process of liquid-immersed elec-
trical transformers using heat pipes [10]. However, such analysis
requires correct definition of heat convection coefficient constants
and boundary conditions, which are influenced by the oil flow in
the transformer tank. Therefore, the application of standalone FEM
for power transformer thermal calculations requires significant
computational effort and experimental data for this definition. For
the accurate calculation of these parameters, the coolant flow
distribution must be modeled, therefore necessitating the incor-
poration of computational fluid dynamics (CFD) tools to the
analysis. 2D coupled analysis is performed in Refs. [11] and [12].
Numerical modeling of heat transfer and fluid flow in power
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Nomenclature

am (m=ijk,l) coefficients used in finite element discretization
b, (m=1iy,k,l) coefficients used in finite element discretization

[C] pressure gradient matrix

[cr divergence matrix

cm (m=1ij,k,l) coefficients used in finite element discretization

p specific heat (J kg ' (°C)™ 1)

dm (m=iyj,k,l) coefficients used in finite element discretization

D dimension of the physical space (2 or 3)

E thermodynamic internal energy (J)

f traction force (N)

fa normal component of fon I' (N)

[F] vector which incorporates any traction boundary
conditions on velocity

fe tangential component of fon I" (N)

[Fr] vector which incorporates any mixed boundary

conditions on velocity and traction

§ gravitational acceleration (m/s?)

h heat transfer coefficient (W/(m?°C))

I unit tensor

K thermal conductivity (W/(m °C))

[K] viscous matrix

[Kr] thermal diffusion matrix

[M] mass matrix

M nodes of finite element mesh

n direction normal to the considered surface (outward
pointing unit normal vector)

N nodes of finite element mesh

[N(u)] advection matrix

p pressure (N/m?)

[P] vector of pressure values at each node i of the finite
element mesh

[Q] vector of heat source values g; at each node i of the
finite element mesh

q heat loss per unit volume (W/m?)

s number of iterations

[S] stiffness matrix

[S€] elementary stiffness matrix

T temperature (°C)

[T] vector of temperature values T; at each node i of the
finite element mesh

u Fluid velocity (m/s)

Uy normal component of u on I' (m/s)

U; tangential component of uonTl (m/s)

[U] vector of velocity values at each node i of the finite
element mesh

174 volume of finite element (m?)

Greek symbols

thermal expansion coefficient (1/°C)
piecewise smooth boundary of Q
linearized strain rate tensor
N1,M2,m3,M4 finite element shape functions

U dynamic viscosity (kgm~'s1)

P fluid mass density (kg/m?)

4 strain rate tensor
T
{

mll~ T

unit tangent vector on the considered surface
i} piecewise-polynomial basis functions used in the finite
element implementation of Navier—Stokes equations

{¥i} piecewise-polynomial basis functions used in the finite
element implementation of Navier—Stokes equations
Q computational domain

transformers is proposed in Ref. [13], by means of a simplified 2D
configuration, consisting of an element composed of two windings
wound around a core. Coupled fluid flow and heat transfer
modeling by finite volume method (FVM) in three dimensions is
proposed for three-phase and single-phase dry-type transformers
in Refs. [14] and [15], respectively. The coupling of 3D transformer
CFD-thermal analysis is a complex task that must take into account
the composite details of the active part and tank geometry as well
as the interaction between thermal, oil or air velocity and elec-
tromagnetic field of the device. In Ref. [16] coupled fluid flow, heat
transfer and electromagnetic numerical analysis is applied in
three-phase dry-type electrical transformers, further enhancing
the accuracy in the prediction of transformer temperature. In Ref.
[17] 3D FVM is used for modeling of fluid flow in an encapsulated
three-phase dry-type transformer and is coupled to an electric
circuit model and a detailed model of the windings and core for
the electromagnetic field calculations, based on FEM. Coupled 3D
CFD-FEM analysis of the thermal performance in oil-immersed
power transformers has not been presented in the relevant
literature.

In our previous work [9], a 2D hybrid analytical-numerical
technique for ONAN transformer thermal analysis was presented,
able to predict thermal performance at a low computational cost
for optimization purposes. The present work expands thermal
analysis in three dimensions, taking into account detailed trans-
former geometrical parameters and coupling with fluid flow
dynamics. The proposed methodology involves iterative coupling
of steady state non-linear heat equations and fluid flow equations,
both solved by three-dimensional finite element method. The
solution uses the results of electromagnetic analysis for proper

definition of the transformer heat sources. The method of choice
for the solution of Navier—Stokes equations is quite dependent on
the application. In our case FEM was chosen for a number of
reasons, as explained in the followings. The FEM implementation
is based on a variational formulation of the Navier—Stokes
problem in appropriate function spaces, and determines “discrete”
approximations in certain finite dimensional subspaces (“trial
spaces”) consisting of piecewise-polynomial functions. By this
approach the discretization inherits most of the rich structure of
the continuous problem, which, on the one hand provides a high
computational flexibility and on the other hand facilitates
a rigorous mathematical error analysis. These are the main aspects
which make the FEM increasingly attractive in CFD. Methods like
FVM or spectral Galerkin method are also applicable, with specific
pros and cons according to each application. Table 1 of the revised
paper lists the pros and cons of each method, highlighting the
reasons for the choice of FEM in our case [18]. However, it must be
noted that the details are the subject of much controversial
discussion concerning the pros and cons of the various methods
and their variants, as well as that, this conflict is partially resolved
in many cases, as the differences between the methods, particu-
larly between FEM and FVM, often disappear on general meshes. In
fact, some of the FVMs can be interpreted as variants of certain
“mixed” FEMs.

The paper is organized as follows: Section 2 presents the
proposed methodology details, namely the heat and fluid flow
equations that need to be solved in order to describe the trans-
former thermal performance, as well as their coupling and
solution steps. Section 3 presents the application of the method
to the prediction of transformer thermal performance and the
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Table 1

Comparison of FEM versus other numerical methods for the solution of Navier—Stokes equations [18].

Method Brief description

Advantages compared to FEM

Disadvantages compared to FEM

Finite difference methods Approximation of the Navier—Stokes
equations in their “strong” form by
finite differences

Approximation of the Navier—Stokes
equations as a system of (cell-wise)
conservation equations

Approximation of the Navier—Stokes
equations in their variational form

by a Galerkin method with “highorder”
polynomial trial functions

Finite volume methods

Spectral Galerkin methods

Easy implementation — Problems along curved boundaries,

— Difficult stability and convergence analysis,
— Mesh adaptation difficulty.

Based on “physical” conservation — Problems on unstructured meshes,
properties — Difficult stability and convergence analysis,

— Only heuristic mesh adaptation.

High accuracy — Treatment of complex domains difficult,

— Mesh and order (hp)-adaptation difficult.

respective results are commented. Finally, Section 4 concludes
the paper.

2. Proposed methodology

The proposed methodology combines 3D FEM solution of
thermal and fluid flow equations, for the derivation of the trans-
former temperature distribution under different loading condi-
tions. The coupling of fluid flow equations with heat equations is
necessary in order to model the oil flow within the transformer
tank. Therefore, the thermal conditions at the boundaries between
the transformer active part and tank components and the cooling
medium are calculated by the proposed method and there is no
need to externally predefine them in the thermal finite element
model.

Apart the aforementioned methodology, accurate prediction of
transformer thermal performance is enhanced by:

- Detailed geometry representation of transformer active part
and tank: special consideration is given to the representation
of design details of particular importance to thermal anal-
ysis, such as the existence of cooling ducts in the coils and
the tank corrugated panels geometry. The detailed model is
derived through an automated design process, enhancing
the model accuracy with the least possible computational
effort.

- Accurate estimation of the transformer heat sources, i.e. the
core and coils loss density, which are determined through an
appropriate design methodology, involving electromagnetic
analysis results [21].

2.1. Solution of heat transfer equations in solids by FEM

2.1.1. Heat transfer equations
The 3D thermal transformer analysis is governed by the
following form of Poisson equation:

o°T o°T o°T

where T is the temperature at each point of the considered domain
(°C), Kx, Ky and K; are the materials thermal conductivities in the x-,
y- and z-direction, respectively (W/(m°C)) and q is the heat source
in the transformer conductors and cores (W/m?), corresponding to
the respective loss density. The above equation applies to aniso-
tropic materials in x-, y- and z-direction (the contribution of other
directions, namely xy, yx, Xz, zx, yz, zy, is considered negligible). The
heat source is obtained through the losses in the transformer cores
(no load losses) and windings (load losses), calculated through
analytical formulas according to the transformer characteristics

(winding and core dimensions, winding material resistivity, core
material specific loss curve). These losses are considered to be
uniformly dissipated along the transformer cores and windings,
respectively, deriving the loss density that is used to calculate the
heat source q. Equation (1) is valid under the assumption of a steady
state, as well as the assumption of a homogeneous heat conduc-
tivity K distribution.

2.1.2. Boundary conditions

The proper solution of (1) involves correct definition of the
boundary conditions between the transformer active part and tank
components and oil (heat convection boundary conditions). The
boundary condition imposed on these surfaces is expressed by the
following equation:

— oT
K |5, +hiT=Ty] = 0 (2)

where n is the direction normal to the surface, h is the heat transfer
coefficient (W/(m?°C)) of the considered surface, Ty, is the
temperature (°C) imposed on the boundary and |K | is the thermal
conductivity of the material of the considered surface (since this
coefficient is dependent on the x-, y- and z-coordinates, and given
that the space discretization is performed by tetrahedral elements,
as explained in the next section, the coordinates of the center of
each tetrahedra] face of the considered surface are used for the
calculation of |K |). Complicated thermal tests and calculations are
required in order to determine the true value of h [19,20], especially
in the case of the surfaces between the windings and oil circulating
in the ducts. However, coupling of heat flow equations to fluid flow
equations does not require prior knowledge of this coefficient, as
explained in the following sections.

2.1.3. Discretization via finite element method

The considered transformer temperature field is represented by
a group of finite tetrahedral elements. Therefore, a continuous
physical problem is converted into a discrete problem of finite
elements with unknown field values in their vertices nodes. The
temperature at each point inside a tetrahedral element with
vertices nodes i, j, k and [, is given by

T(x,y,2) = Ny + MX + N3y + N4z (3)

where coefficients 71, 112, 73 and 74 (also known as shape functions)
depend on temperatures T;, Tj, Ty, T; and the vertices coordinates
according to the following equation:

T; = m + MX; + M3Yi + Naz;

Tj = m +mX; + N3Yj + 147 (4)
T = M1 + MaXp + N3V + NaZ

T) = m +m2x + 13y + M4z

The solution of the system of equations (4) yields:
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a,-T,- + a]T + aka —+ alT,

m =
bT +b +kak+blTl
N2 = 6V 5)
n C,'Ti —+ C]T + Cka + ClTI
5 =
d T; + d;T, + dka +dT,
where
1111 %y 2 1y 2
1% X X X JYic J 4
V= oh R = X yie Zi| b=~ |1 Yk 2k,
6|Yi ¥j Yk i Xy z 1y z
i 7 7, 2 1 Y1 4 1 2
leZj Xj yjl
Gi=|Xk 1 z¢|.di=—|x yp 1 (6)
X] 1 Z) X1 Y 1

Combining equations (3), (4) and (6) we get the following
expression for the temperature at each point of the tetrahedral
element:

T0y.2) = Y auem+bmX+ Gy + dn2) T 7)
m=ijk,|l
The discretized form of (1) is:
[S]-[T] = Q] (8)

where [S] is the stiffness matrix defined by the finite element
method (N x N for a finite element mesh consisting of N nodes), [T]
is the unknown column vector of temperature values T; at each
node i of the finite element mesh (N x 1 for a finite element mesh
consisting of N nodes) and [Q] is the known column vector of heat
source g; at each node i of the finite element mesh (N x 1 for a finite
element mesh consisting of N nodes). The elements of the stiffness
matrix derive by summation of each [S°] elementary stiffness
matrix corresponding to tetrahedral element e of the mesh, with:

K ) -
q = 36"‘9/(bpbq+cpcq+dpdq) forp =ij klandq = ij k1
(9)

where |K |, is the magnitude of the heat conductivity of the
element (deriving from the K, K, and K, components of the
element material thermal conductivity at the center of the tetra-
hedral element).

S

2.2. Solution of CFD equations by FEM

2.2.1. Navier—Stokes and Boussinesq equations

In solid and liquid materials, heat transfer and viscous fluid flow
are governed by Navier—Stokes equations, deriving from the basic
principles of conservation of momentum, mass and energy.

The conservation of momentum, mass (continuity) and energy
principles are described by equations (10),(11) and (12) respectively:

p(aait+(ﬂ .V).H)_v.ﬁzp.g (10)
(%HTI »V)-p)ﬂ)-(v-ﬁ) =0 (1

where p stands for the fluid mass density (kg/m?), u s the fluid
veloc1ty (m/s), @ is the strain rate tensor, p denotes the pressure (N/
m2), g is the gravitational acceleration (m/s s?), E is the thermo-
dynamic internal energy (J), K is the material thermal conductivity
(W/(m°C)) and T is the temperature (°C).

For Newtonian fluids! the strain rate tensor 7 is given by

7= 2@7%@-3 ) —pl (13)

where y is the dynamic viscosity (kgm~'s™1), I is the unit tensor
and % is the linearized strain rate tensor, i.e.

Exx &y &xz
£ = ny Syy Eyz ( 1 4)
Ex &y &z

where each component of ¢j; of the above matrix is yielded by

_ 1fou; oy
& 2<6xl+6xj> (15)

Using equations (5) and (6) equation (2) becomes

p(aﬂ +(u -V)-U)

= V-2 uH+=pg (16)

In case of an incompressible material®p is constant and equation
(11) reduces to

v-u =0 (17)

Therefore, the final form of the Navier—Stokes equations used in
the CFD analysis of the paper are described by (12), (16) and (17).

The thermal flow of incompressible fluids can be represented by
using the Boussinesq approximation used in the field of buoyancy-
driven flow (also known as natural convection, i.e. heat transport,
in which the fluid motion is not generated by any external source
(like a fan) but only by density differences in the fluid occurring due
to temperature gradients — this type of flow is encountered to
ONAN transformers). It states that density differences are suffi-
ciently small to be neglected, except where they appear in terms
multiplied by g, the acceleration due to gravity. Thus the variation
in density is neglected everywhere except in the buoyancy term.
For small temperature differences between the T, and T the varia-
tion of the fluid density between p, to p depends linearly on
temperature, through the equation:

p=po(1-p-(T—-To)) (18)

where ( is the thermal expansion coefficient (1/°C), while p, and T,
represent reference values of mass density (kg/m>) and temperature
(°C), respectively. Assuming that the gravitational acceleration is the
only external force, then the force p,- g (1 — - (T — Ty)) is caused
in the fluid by temperature variations.

! Fluids that have a linear relationship between stress and strain rate are called
Newtonian fluids. This is a property of the fluid, not the flow. Water, air and the
considered transformer oil are examples of Newtonian fluids, while highly viscous
fluids are examples of non-Newtonian fluids.

2 Incompressible flow is solid or fluid flow in which the divergence of velocity is
zero. This is more precisely termed isochoric flow. It is an idealization used to
simplify analysis. In reality, all materials are compressible to some extent. Note that
isochoric refers to flow, not the material property. This means that under certain
circumstances, a compressible material can undergo (nearly) incompressible flow.
However, by making the ‘incompressible’ assumption, one can greatly simplify the
equations governing the flow of the material.
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2.2.2. Initial conditions

The appropriate initial conditions for equations (12),(16)and (17)
are: (1) any velocity field, Uo, which is solenoidal (i.e., must satisfy
equation (17)) and (2) any temperature field, T,. Note that no initial
conditions are required for pressure; the initial pressure field, po, is
contained implicitly in equations (12) and (17), given ﬂo and To.

2.2.3. Boundary conditions
(a) Velocity
In general, the computational domain Q is to be regarded as

being bounded by a piecewise smooth boundary, I', along which
the following boundary conditions are permissible.

oun

fan = —P+2'#‘W (19)
ou ou
fo=w (e ) (20)

Equations (19) and (20) specify u, or f, and u;, or f; where u, and
u, are the normal and tangential components of uonl (m/s)and f,
and f; are the respective components of the surface traction force
(N), while n and t are the outward pointing unit normal vector and
the unit tangent vector, respectively.

(b) Temperature

The general boundary condition appropriate to equation (12) is
equation (2) presented in Section 2.1.2.The special case of specified
temperature may be obtained from equation (2) by letting h — <.

(c) Pressure

No pressure boundary conditions (i.e., specified pressure along
a portion of I') are applied, since they are inconsistent with equa-
tions (12), (16) and (17) and therefore ‘illegal’.

2.2.4. Discretization via finite element method

The finite element spatial discretization of equations (12), (16)
and (17) is performed by the Galerkin method via the following
expansions in the basis sets {¢;} and {y;}, where the piecewise-
polynomial basis functions are endowed with the property that
all but one are zero at a particular node, and the basis function for
that node is unity; this conveniently identifies the amplitude
coefficients of the expansions in the basis set with nodal values of
the variables — thus,

N

ul(x,t) = > ui(t)-9i(x) (21)
i=1
N

Td(x,t) = > Ti(t)-9i(x) (22)
i=1
M

PAx,t) = > Pi() (%) (23)

i=1

where, in the discretized domain, there are N nodes for velocity and
temperature (neglecting boundary conditions) and M nodes for
pressure (N=M in our case, since the same discretization is used
for pressure and velocity); the superscript d indicates a finite
dimensional approximation. The basis functions for pressure must

be at least one order lower than those for velocity [22], otherwise
the final matrix of coefficients for the discretized dependent vari-
ables will be rank deficient and the solution (especially for the
pressure) will be difficult or impossible to obtain. For convenience
and higher accuracy, the basis functions for temperature are taken
to be the same as those for velocity.

Inserting equations (21)—(23) into the weak (Galerkin) form of
equations (12), (16) and (17) (which reduces differentiability
requirements — ¢; can be continuous with piecewise-
discontinuous first derivatives and y; can be piecewise-discon-
tinuous), leads to the following set of ordinary differential equa-
tions (ODEs), the Galerkin FEM equations, written in a compact
matrix form,

[M][U] +[[K] + [N(w)]][U] + [C][P] + B[M]'[T] = [F] + B[M]'[T],  (24)
[C]'[u] = 0 (25)
[MY'[T] + [[Kr] + [Nr))][T] = [Fy] (26)

In equations (24)—(26) [U] is a global vector of length D x N (D is
the dimension of the physical space; 2 or 3) containing all nodal
velocity components, [P] is a global M x 1 vector of nodal pressures,
and [T] is a global N x 1 vector of nodal temperatures; [F] is a global
vector (length D x N) which incorporates any traction boundary
conditions on velocity, and [Fr]isan N x 1 vector which incorporates
any of the ‘mixed’ boundary conditions of equation (20). Specified
nodal values of velocity and temperature are imposed directly on the
assembled system, typically by deleting the equation in question
and transposing all coupling terms to the right hand side (RHS) or by
replacing the equation by one with all zeros except for unity on the
diagonal and placing the specified value on the RHS. [M] is the
D-N x D-N “mass” matrix, [M] is an N x N subset of [M] (multiplied
by the appropriate scalar), [K]is the D-N x D-Nviscous matrix, [K7] is
the N x N thermal diffusion matrix, [C] is the D-N x M pressure
gradient matrix and its transpose, [C]Tis the M x D-N divergence
matrix, [N(u)] is the D-N x D-N non-linear advection matrix, and
[N7(u)]is a D-N x N subset of [N(u)]. [M], [N(u)], and [N7(u)] are
actually composed of blocks of smaller (N x N) matrices.

2.3. Material properties

The temperature variant physical properties of mineral oil are
calculated by equations (27)—(30) [13]:

p(T) = 1098.72 — 0.712T (27)
]E ‘(T) — 0.1509 — 7.101e~5T (28)
cp(T) = 807.163 + 3.58T (29)
w(T) = 0.08467 — 0.0004T + 5¢~7T? (30)

where c; is the specific heat at constant pressure (J kg=1(°C)™), Tis
the temperature (in °C) and g is the dynamic viscosity (kgm~'s1).

According to equations (27)—(30), the oil density, thermal
conductivity and dynamic viscosity decrease with increasing
temperature, but the specific heat at constant pressure varies in the
same way as the temperature.

Temperature variation for the specific heat and heat conduc-
tivity of the core and winding materials (copper and iron, respec-
tively) is also taken into account, expressed by equations (31)—(34),
and the respective variation curves for their heat conductivity and
specific heat are shown in Figs. 1 and 2, respectively. Moreover, iron
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and copper mass densities are considered constant and equal to
7870 kg/m> and 8960 kg/m?>, respectively.

chon(T) = —2.91e *T? + 0.522T + 431.88 (31)
g PPE(T) = —3.20e *T? + 0.221T + 376.98 (32)
WY (T) = 8.64e T2 — 0.104T + 404.18 (33)
uPPer(T) = 1.22e4T? — 0.128T + 83.71 (34)

Temperature T in equations (27)—(34) is the nodal temperature
value (i.e. the value at the considered node of the FEM mesh,
calculated according to Section 2.1.3).

Due to the non-linear characteristics of the properties described
in equations (27)—(34), equation (8) becomes non-linear. The
solution of non-linear equations (8) and (24)—(26) must be itera-
tive, as explained in the following paragraphs.

2.4. Coupled 3D CFD-FEM model

The transformer 3D FEM model is illustrated in Fig. 4, consisting
of the one-fourth of its real geometry (Fig. 3), i.e. half of the
transformer width and length, due to symmetry, which is taken
into account by the imposition of appropriate Dirichlet as well as
Neumann boundary conditions. The actual wound core transformer
active part consists of the high voltage (HV) and low voltage (LV)
windings of three phases and four iron cores that surround them.
The model of Fig. 4 comprises two of the four iron cores, the HV and
LV winding of phase a, and half of the HV and LV winding of phase
b (middle HV and LV windings). The cooling ducts at the parts of the
windings outside the core windows are also represented as
orthogonal gaps in the winding material, enabling the circulation of
oil between them.

For the derivation of the transformer thermal distribution, the
thermal and fluid flow equations (8) and (24)—(26) are solved
iteratively, for a prescribed loss density in the transformer core and
windings, derived by the loss values of the considered design. Fig. 5
illustrates the flowchart of the proposed method, describing the
coupling of the thermal and fluid flow equations. Only an initial
guess for the transformer temperature and oil velocity has to be
defined, providing the initial condition for the coupled FEM solver.
T, in Boussinesq equation (18) is the average temperature on the
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Fig. 1. Variation of iron and copper heat conductivity magnitude with temperature.
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Fig. 2. Variation of iron and copper specific heat with temperature.

horizontal symmetry plane of the FEM model. Since the procedure
involves the solution of two coupled non-linear equations, a large
number of iterations would result to significant execution times.
The recommended practice is to provide the user the ability to
select the number of non-linear iterations (preferably small values,
not exceeding the number of ten), and observe the change in
solution between iteration steps, so as to select the smallest one
and derive the least execution time possible. Therefore, the total
number of iterations s of the coupled solver has to be defined by the
user, depending on the specific transformer characteristics and its
loading conditions. The above process is more cost-effective than
the adoption of a general number of iterations which might
possibly result to extremely large execution time which could
compromise the applicability of the method in the case of 3D FEM
coupled problems. The initial guess for the transformer tempera-
ture and oil velocity is used only for the first iteration step. The heat
equations are solved first, deriving an initial temperature field,
based on the initial values provided by the user. The non-linear
equations of the heat solver are linearized. Two different lineari-
zation strategies are available, namely the Picard linearization and
the Newton linearization. The iterative solver begins with the Pic-
ard iterations, and if the given convergence tolerance between two
iterations is not met before the iteration count takes its maximum
value, the iteration type is switched to Newton until convergence is

Fig. 3. Perspective view of the considered wound core distribution transformer active
part and tank.
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Fig. 4. Perspective view of 3D transformer FEM model: (a) active part, (b) oil tank.

achieved. If still convergence is not attained, then the solution is not
feasible and the user has to redefine the initial values of tempera-
ture and oil velocity conditions. After the convergence of the heat
solver, the CFD solution begins, using the temperature field values
provided by the heat solver. The Picard and Newton iterations
sequence is similar to the one described for the heat solver, and if
convergence is not achieved initial conditions must be redefined. In
order to deal with the intrinsic non-linear characteristics of the
Navier—Stokes and thermal equations as well as the effect of the
particular non-linear material properties involved in their solution,
the FEM solver used in the methodology adopts a hybrid lineari-
zation scheme, involving two methods of linearization instead of
only one. Therefore, Picard and Newton linearization methods are
used successively, as they ensure complementary advantages in
terms of stability and fast convergence to the solution [23]. This is
the main objective for the use of hybrid Picard—Newton scheme in
the diagram of Fig. 5. This process is repeated for the s iterative
steps of the solution, where the temperature and oil velocity
conditions computed in the s—1 iteration are used as initial
conditions for the s iteration.

The transformer thermal limits are chosen according to the
guidelines imposed by the IEEE Standard C57.91-1995 (R2002)
[24]. A maximum winding and oil temperature of 120 °C and
110 °C, respectively, is imposed, based on the relative aging rate
of the insulation in the transformer. These are the upper limits
for the transformer windings and oil temperature and the
computed transformer temperature must always be below these
limits.

2.5. Heat convection calculation

The convection at the interface boundaries between the
transformer active part, oil and tank is computed by the FEM
solver by coupling the velocity field to the heat equation during
each iteration. More specifically, according to Fig. 5, during iter-
ation s, the non-linear heat solver calculates the thermal distri-
bution. This distribution includes the heat fluxes and the
temperature in the boundaries between the transformer active
part and oil, as well as the boundaries between the tank and the
oil. These data are passed to the CFD-FEM solver of s iteration and
the heat convection coefficients are calculated prior to the solu-
tion process. The results of CFD-FEM of s iteration (namely, the oil
velocity field) are used as input for the thermal equations solution
process by FEM of the s + 1 iteration and so on. Therefore there is
no need to define convection coefficients at these boundaries.
Only the initial guess of the transformer temperature and oil
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Fig. 7. Optimized mesh of transformer: (a) active part and (b) oil tank.

velocity provided by the user is used for the first time step of the
solution, a guess that is not however crucial for the convergence
of the method, since it is later refined by the updated results of
the coupled solver. Moreover, in our case of oil cooled trans-
former, no radiation effects need to be taken into consideration as
in the case of air-cooled ones [25].

2.6. Software implementation

The implementation of the proposed method required the
development of special routines enabling the interaction of
different software packages and their parameterization for the
examined transformer problem. More specifically, the method-
ology presented in Ref. [21] was used to derive the transformer
performance characteristics (losses in the transformer windings
and core), based on the transformer design characteristics. The
detailed model of the transformer active and mechanical part
according to the design specifications was produced by the design
software package presented in Ref. [26].

Next, a separate software package was employed to create and
optimize the 3D FEM mesh needed for the solution of FEM equa-
tions [27]. The geometry definition for the creation of the mesh
requires the construction of a 3D model with specification of
coordinates of representative points of the considered geometry,
taking advantage of possible existing symmetries. The pre-

a Top oil temperature
measurement

Temperature

I 110.

92.5
75.0

57.5

I40.0

processing procedure concludes with discretization of the model
space into finite elements. The implementation of pre-processing
tasks described above can become quite complex in case of the
detailed transformer geometry and requires specific computer
aided design knowledge and increased effort. However, in the
developed methodology, the transformer 3D geometry used as
input to the meshing software was created automatically by
a proper command file generated by Ref. [26] and no further user
interaction was required. Fig. 6 illustrates the initial mesh created
by the software, consisting of approximately 3000 nodes. As the
construction of the mesh was crucial for the accuracy of the
calculations conducted by the finite element method, careful
consideration was given on its density and homogeneity. Meshes of
various densities were constructed, providing the ability to choose
the most suitable one (according to requirements in accuracy and
computation time). Fig. 7 shows the active part and tank of an
optimized mesh of intermediate density (equal to 12,000 nodes).
The mesh of Fig. 7 derived after refinement in areas of special
interest: that is why the nodes density is considerably greater in the
windings area and the tank surface, in order to obtain greater
accuracy in the winding ducts and tank panels region, respectively.

Finally, a finite element software (multiphysics solver Elmer)
was used for the solution of the coupled problem and the post-
processing of the results [28]. The CFD and heat transfer equa-
tions were implemented in the multiphysics solver (using the input
of the parameterized 3D FEM transformer mesh), and were not
recoded. The material properties of the active part and oil are
described in Section 2.3, while the boundary conditions between
the active part surfaces and the oil are given in Sections 2.1.2 and
2.2.3. The properties of the heat solver and Navier—Stokes solver
are described in Fig. 5. A maximum number of eleven iterations are
prescribed for each solver and the convergence tolerance is equal to
1e~>. It must be noted that while the heat flow equations are solved
for the entire domain (active part and oil) the Navier—Stokes
equations are solved only for the oil circulating between the active
part and tank.

Special routines were implemented to obtain and visualize the
solver results by interfering with the Elmer output data. This
procedure was necessary in order to specialize and adapt the
proposed 3D FEM method for CFD-thermal transformer modeling
to the specific transformer characteristics [29], while it provides the
possibility to repeat and automate the analysis involving a reduced
effort.

Fig. 8. Temperature distribution (in °C) at the 400 kV A transformer active part and tank walls (operation under nominal load): (a) with and (b) without wireframe tank model.
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Fig. 9. Details of the temperature distribution (in °C) in the 400 kV A transformer active part (operation under nominal load): (a) entire active part, (b) core and HV winding (the
center of axes in (a) corresponds to point (0,0,0) of the model geometry).
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Fig. 11. Temperature variation along different vertical contours of the 400kV A
transformer core and windings (as illustrated in Fig. 9).

3. Results and discussion

The proposed method was applied for the prediction of thermal
performance to transformers of different ratings, along with their
comparison to the respective measured values, where available.

3.1. Application to a 400 kVA transformer

Figs. 8 and 9 illustrate the results of the method in a 400 kV A,
20—0.4 kV transformer case, operating under nominal load, at an
ambient temperature equal to 30 °C. The HV windings loss is equal
to 1853 W, while the LV windings loss is equal to 1554 W. All the
results of this section derived with the use of the optimized mesh of
Fig. 7. Fig. 8 represents the thermal distribution results inside the
active part and the tank walls in half of the FEM model (the rest of
the wireframe model edges are kept in the figure for better
representation purposes) while Fig. 9 shows details of the results in
the transformer active part. Fig. 10 shows the convergence history

for the coupled Navier—Stokes heat flow solver applied in the
400 kV A transformer thermal distribution prediction. Moreover,
this figure compares the convergence characteristics of the
proposed hybrid Picard—Newton iteration scheme with the
respective characteristics when only Picard iterations are used for
each non-linear solver, illustrating the better convergence perfor-
mance achieved by the hybrid scheme (in terms of relative change
in the solution of each iteration and number of iterations).

Fig. 11 illustrates the variation of temperature along the
contours of the active part depicted in Fig. 9. According to the
curves of Fig. 11, the maximum temperature occurs at the inner
corner of the HV winding, reaching the maximum value of 77 °C at
the upper part of the winding. However, it must be noted that this
point does not correspond to the hottest-spot of the winding, i.e.
the point with the maximum winding temperature. This spot is
located inside the winding, and its respective temperature is equal
to 85 °C, a temperature significantly higher than the one exhibited
in the outer part of the inner corner of the winding, due to the fact
that this corner is in contact to the cooling medium circulating in
the gap between the HV and LV winding. The variation along the
contours of the inner and outer corner of LV winding, as well as the
inner corner of the HV winding, exhibits similar behavior, pre-
senting an overall gradient of approximately 15 °C. However, in the
outer corner of the HV winding, where the circulation of the oil is
more efficient (since no other winding is interposed between this
corner and the tank walls), better cooling and heat dissipation is
achieved and the temperature at the upper parts of this contour
increases less than in the respective inner corner of the winding. As
far as the core is concerned, the temperature rise is lower than the
one in the windings, due to its lower loss density, resulting
accordingly to less steep temperature gradient between its lower
and upper part.

Fig. 13 illustrates the variation along the horizontal contour in
the middle of the upper HV winding face of Fig. 9. In this figure, the
influence of the winding ducts in the temperature variation can be
observed (2", 4™ 6™ and 8™ point of the temperature variation
curve). More specifically, these points correspond to points in the
HV winding ducts, where a significant decrease in the temperature
(up to 9°C in the case of the first duct) is encountered. Fig. 12

Fig. 12. Upper view of active part mesh shown in Fig. 7(a), with enlarged detail of the upper part of HV winding and the 9 nodes that correspond to the graph of Fig. 13.
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Fig. 13. Temperature variation along the middle of the HV winding face of the
400 kV A transformer (temperature of nodes illustrated in Fig. 12).

illustrates the upper view of the active part mesh, along with an
enlarged detail of the upper part of HV winding with the 9 points
that are contained in the graph of Fig. 13. As can be seen in this
detail, due to the mesh discretization, mesh nodes are located in the
middle of the HV winding (and their temperature values are used in
Fig. 13) so no averaging from neighboring nodes was necessary.
Fig. 14 depicts the variation of the magnitude of the y-compo-
nent of the oil velocity vector along the height of the winding ducts
and gap. More specifically, it includes the velocity values calculated
by the model at the nodes inside the ducts located at the center of
the LV and HV winding and the gap between the windings. The first
point of each curve corresponds to the bottom of the ducts and
HV—LV gap and the last one to the upper part of the ducts and
HV—LV gap. The horizontal axis of the figure reports the distance
from the bottom of the tank (which is the lower boundary of the
model geometry). According to Fig. 14, the values of oil velocity
inside the LV and HV winding duct are quite close, while they are
higher compared to the oil velocity inside the gap between the LV
and HV winding, especially at their upper parts. This difference can
be attributed to the fact that the heat sources inside the windings
are higher, thus forcing faster oil circulation in the upper parts of
the ducts area than in the respective area of the windings gap.
Moreover, the width of HV—LV gap is significantly higher than the
width of HV and LV ducts. The variation of oil velocity is consistent
to the measured results presented in other works [30], indicating
anon-linear increase up to the middle of the duct height, where the
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Fig. 14. Magnitude of the y-component of the oil velocity vector along the windings
cooling ducts and gap for the 400 kV A transformer.

Table 2
Comparison of computed and measured temperatures for the 160 kV A transformer.

Point Measured Calculated Difference (%)
temperature (°C) temperature (°C)
Top oil 66 62 —6.1
HV winding 78.8 83.1 +5.5
LV winding 79.5 78.2 -1.6
Quadratic average 4.8

maximum velocity is obtained, followed by a non-linear decrease
along the rest of its height. It is however noted that the results
presented in Ref. [16] can be used in order to obtain an overall
aspect of the oil velocity variation along the transformer height and
not a direct comparison of the respective oil velocity values, since
they correspond to different transformer capacities, cooling system
and winding configurations as well as special transformer design
specifications. Detailed experimental validation by local measure-
ments of oil velocity values inside the active part is however quite
difficult and is not implemented in the present section.

3.2. Application to a 160 kVA transformer

The method was also applied to another 20/0.4 kV transformer,
of rated power equal to 160 kV A and its results were compared to
the available measurements. The transformer operates under
nominal load, at an ambient temperature equal to 25°C (the
ambient temperature was considered equal to the respective
ambient temperature during the measurement of the transformer
temperature). The HV windings loss is equal to 1333 W, while the
LV windings loss is equal to 1007 W. Table 2 depicts the difference
between the measured and computed top oil, HV and LV winding
temperatures, yielding an overall difference (quadratic average)
equal to 4.8%. The top HV and LV winding temperature is measured
at the center of the upper part of the winding (as depicted in Fig. 9).
The top oil temperature is measured at the center of the upper part
of the tank (as depicted in Fig. 8). It must be noted that although
Figs. 8 and 9 refer to the 400 kV A transformer, they are also used to
indicate the measurement points in the 160 kV A transformer, since
the geometry configuration of the active part and tank is similar
and only their dimensions are different. The deviations in the
prediction of temperatures in HV winding and top oil regions are
more important (5.5% and 6.1%, respectively). In counterparts, the
prediction of temperature in LV windings is more accurate (less
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Fig. 15. Comparison of measured and calculated top LV winding temperature for the
160 kV A transformer with the use of different FEM mesh densities.
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Table 3
Comparison of computed and measured top LV winding temperatures for the
160 kV A transformer with the use of different mesh densities.

Number of Measured Calculated Difference (%)
mesh nodes temperature (°C) temperature (°C)

3000 79.5 71.0 -10.7

5000 75.0 —-5.7

12,000 78.2 -1.6

30,000 78.9 -0.8

60,000 79.0 -0.6

90,000 79.1 -0.5

than 2%) in a region with the higher temperatures, which is the
most crucial for the transformer life expectancy. It is also observed
that the difference for top oil temperature (Table 2) is —4 °C but for
HV winding temperature it is equal to +4.3°C. Such a large
difference may explained by the approach described in Section 2.3,
where the temperature T used in the material properties equations
is the nodal temperature value. Therefore, the oil viscosity variation
inside the ducts (where the temperature gradient is generally much
higher than in other areas of the circulating oil) results to important
variations of the oil velocity, partially explaining the differences
between the calculated and measured values of Table 2. However,
this approach is more accurate than the adoption of an average
viscosity calculated over the duct length, since it provides the
ability to better estimate the top winding temperature values
(possibly leading to a slight overestimation which is, however, on
the safe side when thermal performance is considered). The
adoption of an average viscosity might lead to significantly lower
temperature values in the windings and an important underesti-
mation of the hot spot temperatures, which are more crucial than
the oil temperature for transformer life expectancy. Moreover, the
use of nodal temperature values provides the ability to take
advantage of the mesh discretization in the ducts region and leads
to more accurate results in higher mesh densities.

The above results have been obtained with the use of the opti-
mized mesh of Fig. 7. A comparative analysis of the computational
effort and accuracy of different mesh densities has also been carried
out, in order to validate the sufficiency of the optimized mesh.
Fig. 15 presents the comparison of measured and calculated top LV
winding temperature for the 160 kV A transformer with the use of
different FEM mesh densities. The data of Fig. 15 are also presented
in Table 3. According to the results of Table 3, the optimized mesh of
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Fig. 16. Comparison of mean execution time (at an AMD Athlon X2 Dual-Core QL-60
1.90 GHz, RAM 4 GB) of the non-linear heat and Navier—Stokes solver (for each iter-
ation) with the use of different FEM mesh densities.

Table 4

Comparison of mean execution time (at an AMD Athlon X2 Dual-Core QL-60
1.90 GHz, RAM 4 GB) of the non-linear heat and Navier—Stokes solver (for each
iteration) with the use of different fem mesh densities.

Number of Execution time Execution time
mesh nodes of non-linear of non-linear
heat solver (min) Navier—Stokes solver (min)

3000 3 4

5000 5 7

12,000 9 12

30,000 15 27

60,000 30 45

90,000 60 70

intermediate density provides sufficient accuracy, reducing signif-
icantly the deviation between the measured top LV winding
temperature value and the respective calculated result yielded by
the use of sparser non-optimized meshes (where the mesh is not
uniform and detailed enough in the cooling ducts and tank area).
The use of larger densities could further enhance the accuracy,
however it would result to high execution times, as depicted in
Fig. 16 and Table 4. Fig. 16 and Table 4 present the mean execution
time needed for each iteration of the non-linear heat and
Navier—Stokes solver, for the mesh densities of Table 3. The
comparison of Tables 3 and 4 indicates that the accuracy obtained
by the optimized mesh of intermediate density is sufficient, while
the overall time needed for the FEM calculations is maintained
within acceptable limits compared to other more dense meshes.

Fig. 17 presents the variation of the computed temperature
along the inner corners of HV and LV winding (as depicted in Fig. 9).
It must be noted that the maximum temperature values are ob-
tained along the interior of the windings and not in the inner
boundaries of the contours plotted in Fig. 17, thus the values of
Fig. 17 are lower than the temperature values of Table 2. Fig. 18
shows the temperature variation along the middle of the HV
winding face of the 160 kV A transformer, comprising the point of
maximum HV winding temperature of Table 2.

It must be noted that the LV winding temperatures are lower
than the ones of the HV winding temperatures (as depicted in
Fig. 11 for the 400 kV A transformer and in Fig. 17, for the 160 kV A
transformer). This is attributed to the fact that, in both trans-
formers, the HV windings loss is much higher than the respective
LV windings loss. More specifically, in the case of the 400 kV A
transformer, the HV windings loss is equal to 1853 W, while the LV
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Fig. 17. Temperature variation along the inner corner of HV and LV winding of the
160 kV A transformer (as illustrated in Fig. 9).
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Fig.18. Temperature variation along the middle of the HV winding face of the 160 kV A
transformer (temperature of nodes illustrated in Fig. 12 — point 5 corresponds to the
top HV winding temperature of Table 2).

windings loss is equal to 1554 W (as reported at the beginning of
Section 3.1), while in the case of the 160 kV A transformer, the HV
windings loss is equal to 1333 W, while the LV windings loss is
equal to 1003 W (as reported at the beginning of Section 3.2).

4. Conclusion

In the present paper, the development of a coupled three-
dimensional heat transfer and fluid flow FEM model for the
prediction of ONAN transformer thermal performance was pre-
sented. The method is able to predict transformer thermal distri-
bution without prior knowledge of thermal nodal properties, taking
properly into account the effect of oil circulation. It must be noted
that in case of forced cooling the implementation of turbulence
models will be necessary. Further steps for the precision
enhancement of the method proposed involve the adoption of
proper turbulence models for the oil circulation as well as the
accurate modeling of heat dissipation in transformer cores and
windings and their anisotropic material properties. Moreover, the
inclusion of eddy currents in steel parts is an important contribu-
tion and will be implemented in future developments of the
proposed model.
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